
© 2013 IBM Corporation 

Programming GPUs for non-graphics workloads 
– from General Purpose GPU (GPGPU) to GPU compute 

Tim Kaldewey 

Apr 21  2014 

Tim Kaldewey 
Research Staff Member 
IBM TJ Watson Research Center 
tkaldew@us.ibm.com 
 



Disclaimer 
The author's views expressed in this presentation do not necessarily reflect 
the views of IBM. 

Acknowledgements 
I would like to thank all my co-authors from IBM and my prior positions at Oracle and 
UCSC whose work I am showing in this presentation. 
I would also like to thank Patrick Cozzi for inviting me to teach in his classes multiple 
years in a row and for letting me re-use his introductory material. 



3   

Agenda 

Programming GPUs for non-graphics workloads 
 

■  GPGPU  
■  A brief introduction 
■  Index Search implemented using openGL and Cg 

■  Modern GPU computing with CUDA 
■  A very brief intro to CUDA 
■  Index Search in CUDA 
■  Performance optimizations 
■  A new GPU-optimal (index) search algorithm 



GPU Programming pre-CUDA 

. 

! The graphics pipeline 

•  Vertex Processor - geometric transformations of vertices in 3D space 
•  Rasterizer - transforms geometric primitives (triangles) into pixels  
•  Fragment Processor – colors the pixels 
•  Programmable were only vertex and fragment processors 
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GPGPU Programming 

■  GPGPU(.org)started in 2002 by Mark Harris 

■  Using Graphics APIs to solve non-graphics tasks   
■  E.g. OpenGL & Cg 

■  Required use of graphics APIs 
–  OpenGL for data transfers 
–  Cg to “program” 
–  Operations: 

•  geometric transformations using the vertex processor 
(scatter) 

•  coloring using the fragment processor (gather) 
–  Vertices are stored as float4 (x,y,z,w) 
–  Textures = 2D arrays of float4 vectors (r,g,b,a) 
–  Compute = drawing 



GPGPU Programming 

. 

Steps for GPGU compute: 

1.  Organize data in a screen size array 

2.  Set up a viewport with 1:1 pixel:texel ratio 

3.  Create and bind texture of the same size 

4.  Download input data into texture 

5.  Bind (load) fragment program (computational kernel) 

6.  Render a screen size quad to perform computation, i.e. run 
fragment program on each Pixel 

7.  Read back results 



Let’s Pick a Simple, but Omnipresent Task … Search 
•  Why Search? 

•  Honestly, how many times a day do you visit: 

? 



Let’s Pick a Simple, but Omnipresent Task … Search 
•  Why Search? 

•  Honestly, how many times a day do you visit: 

•  How do you search (millions of) documents efficiently? 

•  Use an inverted index  

? 

Adam 
Bethlehem 
Character 

Drachenflieger 
Eva 
Flughafenbahnhof 
Grabdenkmal 
Haubentaucher 

1,2,3 
4,5 
1,2,3,301,5790 

301,317,5790 
1,2 
5790 
2,5790 
300,5790 

Keyword   DocID 

so
rte

d 



Searching an Index 
•  The task: search an inverted (document) index 

Adam 
Bethlehem 
Character 

Drachenflieger 
Eva 
Flughafenbahnhof 
Grabdenkmal 
Haubentaucher 

1,2,3 
4,5 
1,2,3,301,5790 

301,317,5790 
1,2 
5790 
2,5790 
300,5790 

Keyword   DocID 

so
rte

d 

16 characters max. 

Can be stored 
separately. 
Lookup by 
position. 



Searching an Index 

. 

•  The task: search an inverted (document) index 

char searchkey[16]= “Flughafenbahnhof”; 
result = bsearch((void*)&searchkey,index, 

    numentries,sizeof(char)*16, 
    (int(*)(const void*,const void*)) strcmp); 

•  On the CPU we use a few library calls and we are done 

Adam 
Bethlehem 
Character 

Drachenflieger 
Eva 
Flughafenbahnhof 
Grabdenkmal 
Haubentaucher 

1,2,3 
4,5 
1,2,3,301,5790 

301,317,5790 
1,2 
5790 
2,5790 
300,5790 

Keyword   DocID 

so
rte

d 

16 characters max. 



GPGPU Search – Data Format 

. 

•  Storing data 
–  Obviously you want 1:1 pixel-to-texture element (texel) ratio    
    unless you would like to play Scrabble ;-) 

–  Ascii mapped to 
0.0 to 255.0 

–  1 pixel stores 4 
chars (better?) 

–  Mark beginning of 
words with 0.1 

–  Need to store 
pointer/position in 
document index 
ptr 

–  Align word 
boundaries with 
pixel boundaries r 

–  Null-terminated 
strings 0.0 



GPGPU Search – Data Storage 

. 

•  Store data in texture 



GPGPU Search in Action 

. 

•  Comparing search key with stored strings 

•  Simple test for equality 
–  Compare floats directly 
–  Color by color 



GPGPU Search Code 

. 



GPGPU Search – Code Execution 

. 

•  To execute the code: 

•  Result uses a magic number (not used for ASCII mapping) 0.9 

•  After completion Result is anywhere in the texture 

•  Copying whole texture back to main memory inefficient 

•  Reduction 



GPGPU Search – Reduction 

•  To execute the code: 

•  Result uses a magic number (not used for ASCII mapping) 0.9 

•  After completion Result is anywhere in the texture 

•  Copying whole texture back to main memory inefficient 

•  Reduction: 



GPGPU Search – Reduction 

. 

•  Reduction means gathering “neighborhood” data 



GPGPU Search – Reduction 

. 

•  Repeat until we end up with a single pixel 

•  Search result will be in top left pixel 



GPGPU Search - Performance 

. 

•  10k Berkeley DB index operations (insert delete), all require    
searching the index first, Test001.tcl 

•  Berkley DB uses B-trees, which needed to be flattened for the GPU 

Time required for 10k insert/delete operations using a dual-core 2.2ghz AMD Opteron vs. 
an nVidia 7900GS with 7 vertex and 20 fragment processors. 



GPGPU Search - Performance 

. 

•  10k Berkeley DB index operations (insert delete), all require    
searching the index first, Test001.tcl 

•  Berkley DB uses B-trees, which needed to be flattened for the GPU 

Time required for 10k insert/delete operations using a dual-core 2.2ghz AMD Opteron vs. 
an nVidia 7900GS with 7 vertex and 20 fragment processors. 



GPGPU Search – Where does time go ? 

. 

•  Data Transfer ~40% 
–  More efficient data mapping, e.g. 4 char = 1 float 

•  CUDA made GPGPU obsolete ... 

Time required for 10k insert/delete operations using a dual-core 2.2ghz AMD Opteron vs. 
an nVidia 7900GS with 7 vertex and 20 fragment processors. 

problematic? 
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Programming GPUs for non-graphics workloads 
 

■  GPGPU  
■  A brief introduction 
■  Index Search implemented using openGL and Cg 

■  Modern GPU computing with CUDA 
■  A very brief intro to CUDA 
■  Index Search in CUDA 
■  Performance optimizations 
■  A new GPU-optimal (index) search algorithm 



CUDA Key Concepts – Architecture 



CUDA Key Concepts – Function Classifiers 

•  __global__ 
•  callable from host 
•  must return void 

•  __device__ 
•  callable only from device  
•  function inlined by default (newer CUDA versions) 

•  Global and device functions 
•  No recursion (except Fermi) 
•  No static variables 
•  No malloc() 
•  Careful with function calls through pointers (Fermi) 
•  Cannot access host memory “directly” 



CUDA Key Concepts – Memory address spaces   

•  Host (CPU) and Device (GPU) have separate (memory) address spaces  
•  Data needs to be “transferred” to/from the GPU 
•  Simplest way is to explicitly copy data to/from device memory 
•  Data copy always initiated by host 

•  Specify direction of data copy 
•  ToDevice for input data 
•  ToHost for results 

•  When calling __global__ function pass dst pointer 

cudaMemcpy(void* dst, 
           const void* src, 
           size_t count, 
           cudaMemcopyHostToDevice | cudaMemcopyDeviceToHost  
)   



CUDA Key concepts – Vector types 

! char[1–4], uchar[1–4],short[1–4], ushort[1–4],int[1–
4], uint[1–4], long[1–4], ulong[1–4], longlong[1–2], 
ulonglong[1–2] 

! float[1–4], double[1-2] 

! dim3 
! Available in host and device code 
! Construct with make_<type name> 
int2 i2 = make_int2(1, 2); 
float4 f4 = make_float4( 
  1.0f, 2.0f, 3.0f, 4.0f); 
 ! Access with .x, .y, .z, and .w 

 

! No .r, .g, .b, .a, etc. like OpenGL, Cg 

int2 i2 = make_int2(1, 2); 
int x = i2.x; 
int y = i2.y 



CUDA Key Concepts – Invoking GPU Functions (Kernels) 

•  Calling GPU (__global__) function requires to specify 
•  grid dimensions – How many blocks of threads to launch 

•  1 block executes on 1 streaming multiprocessor to completion 
•  block dimensions – How many threads are in a block 

•  threads execute in groups of 32 (warps) in SIM[T/D] fashion 
•  #threads > warp can be synchronized with __syncthreads() 

__global__ void gpu_Kernel(int a, ...){ 
... 
} 
... 
 
 
dim3 grid(14,0,0); 
Dim3 block(192,0,0); 
gpu_Kernel<<<grid,block>>>(42,...); 
 
 



CUDA Key Concepts – “Global” Variables 

•  __device__ variables 
•  stored in device memory 
•  accessible from all blocks 

•  __shared__ variables 
•  stored in shared on-chip memory (space constraints?) 
•  accessible only within a block 

__device__ int a_dev; 
... 
__shared__ int a_smem; 
 



Index search on the CPU 
 

. 

•  On the CPU we use a few library calls and we are done 

Adam 
Bethlehem 
Character 

Drachenflieger 
Eva 
Flughafenbahnhof 
Grabdenkmal 
Haubentaucher 

1,2,3 
4,5 
1,2,3,301,5790 

301,317,5790 
1,2 
5790 
2,5790 
300,5790 

Keyword 

so
rte

d 

16 characters max. 

char indexCPU[4711]; 
indexCPU[0] 
indexCPU[16] 
indexCPU[32] 
... 

char searchkey[16]= “Flughafenbahnhof”; 
result = bsearch((void*)searchkey,indexCPU, 

    numentries,sizeof(char)*16, 
    (int(*)(const void*,const void*)) strcmp); 



A Simple implementation of (index) search 
 

. 
•  Can we just port a CPU implementation? 

•  On the CPU we use a few library calls and we are done 

Adam 
Bethlehem 
Character 

Drachenflieger 
Eva 
Flughafenbahnhof 
Grabdenkmal 
Haubentaucher 

1,2,3 
4,5 
1,2,3,301,5790 

301,317,5790 
1,2 
5790 
2,5790 
300,5790 

Keyword 

so
rte

d 

16 characters max. 

char indexCPU[4711]; 
indexCPU[0] 
indexCPU[16] 
indexCPU[32] 
... 

char searchkey[16]= “Flughafenbahnhof”; 
result = bsearch((void*)searchkey,indexCPU, 

    numentries,sizeof(char)*16, 
    (int(*)(const void*,const void*)) strcmp); 



Index search on the CPU 

. 

char* indexGPU; 
char* searchkeysGPU; 
char* resultsGPU; 
// copy the data 
cudaMalloc((void**)&indexGPU, sizeof(char)*wordlength*entries); 
cudaMemcpy(indexGPU, indexCPU, sizeof(char)*wordlength*entries, 

    CudaMemcpyHostToDevice); 
// copy the searchkey(s) 
cudaMalloc((void**)&searchkeysGPU, … 
cudaMemcpy(searchkeysGPU, searchkeysCPU, 
     sizeof(char)*wordlength*numsearches, 

    CudaMemcpyHostToDevice); 
// make room for the results 
cudaMalloc((void**)&resultsGPU, … 

•  Get the data to the GPU 



A Simple GPU implementation 

. 
•  Know your hardware (GTX 285, 30 SMs, 8 cores each, 240 cores) 

• Set up an execution configuration & call global function 

dim3 Dg = dim3(30,0,0); 
dim3 Db = dim3(8,0,0); 
searchGPU< < < Dg,Db > > >(indexGPU, entries... 

char* indexGPU; 
char* searchkeysGPU; 
char* resultsGPU; 
// copy the data 
cudaMalloc((void**)&indexGPU, sizeof(char)*wordlength*entries); 
cudaMemcpy(indexGPU, indexCPU, sizeof(char)*wordlength*entries, 

    CudaMemcpyHostToDevice); 
// copy the searchkey(s) 
cudaMalloc((void**)&searchkeysGPU, … 
cudaMemcpy(searchkeysGPU, searchkeysCPU, 
     sizeof(char)*wordlength*numsearches, 

    CudaMemcpyHostToDevice); 
// make room for the results 
cudaMalloc((void**)&resultsGPU, … 

•  Get the data to the GPU 



A Simple GPU implementation 

•  The GPU kernel 

__global__ void searchGPU(char* index, int entries, int wordlength, 
     char* search_keys, int* results) { 

   char* res; 
   // use block and thread numbers for indexing      
   res = bsearch(&search_keys[((blockIdx.x*BLOCK_SIZE)+threadIdx.x) 

             *wordlength], 
   index, 
   entries, 
   wordlength); 

   // use block and thread numbers for indexing     
   results[(blockIdx.x*BLOCK_SIZE)+threadIdx.x] = (res-data)/  

        MAX_WORD_LENGTH; 
} 



A Simple GPU implementation 

•  The GPU kernel 

•  There is no libc on the GPU =( 
•  Just stick __device__ in front of the libc code? 
•  “bsearch” is recursive, but there is no recursion on the GPU 
" Write a iterative one ... 

__global__ void searchGPU(char* index, int entries, int wordlength, 
     char* search_keys, int* results) { 

   char* res; 
   // use block and thread numbers for indexing      
   res = bsearch(&search_keys[((blockIdx.x*BLOCK_SIZE)+threadIdx.x) 

             *wordlength], 
   index, 
   entries, 
   wordlength); 

   // use block and thread numbers for indexing     
   results[(blockIdx.x*BLOCK_SIZE)+threadIdx.x] = (res-data)/  

        MAX_WORD_LENGTH; 
} 



A Simple GPU binary search 

. 

•  Still need strcmp 

__device__ char* bsearchGPU(char *key, char *base, int n, int size){ 
    char *mid_point; 
    int  cmp; 
     
    while (n > 0) { 
        mid_point = (char *)base + size * (n >> 1); 
        if ((cmp = strcmpGPU(key, mid_point)) == 0) 
            return (char *)mid_point; 
        if (cmp > 0) { 
            base  = (char *)mid_point + size; 
            n     = (n - 1) >> 1; 
        } // cmp < 0 
        else n >>= 1; 
    } 
    return (char *)NULL; 
} 



A Simple GPU binary search 

. 

•  Still need strcmp 

•  Again, stick __device__ in front of the libc code 
__device__ int strcmpGPU(char* s1, char* s2){   

 while (*s1 == *s2++) 
  if (*s1++ == 0) return 0; 
 return (*s1 - *(s2 - 1)); 

} 

__device__ char* bsearchGPU(char *key, char *base, int n, int size){ 
    char *mid_point; 
    int  cmp; 
     
    while (n > 0) { 
        mid_point = (char *)base + size * (n >> 1); 
        if ((cmp = strcmpGPU(key, mid_point)) == 0) 
            return (char *)mid_point; 
        if (cmp > 0) { 
            base  = (char *)mid_point + size; 
            n     = (n - 1) >> 1; 
        } // cmp < 0 
        else n >>= 1; 
    } 
    return (char *)NULL; 
} 



Binary Search on the GPU 
•  Searching a large data set (512MB) with 33 million (225)  

 16-character strings 



Binary Search on the GPU – Why is it slow? 
•  Searching a large data set (512MB) with 33 million (225)  

 16-character strings 

•  It's slower than a CPU implementation for all data set sizes! 
–  Let's try some optimizations ... 



Search requires to compare 

! Search naturally requires MANY comparisons 

! The strcmp() library function: 
int strcmp(const char* s1, const char* s2){ 

 while (*s1 == *s2++) 
  if (*s1++ == 0)return 0; 
 return (*s1 - *(s2 - 1)); 

} 

a b c d e f g h i j k l m n o /0 

a b c d e f g h i j k l m n o /0 

... 



Search requires to compare 

! Search naturally requires MANY comparisons 

! The strcmp() library function: 
int strcmp(const char* s1, const char* s2){ 

 while (*s1 == *s2++) 
  if (*s1++ == 0)return 0; 
 return (*s1 - *(s2 - 1)); 

} 

a b c d e f g h i j k l m n o /0 

a b c d e f g h i j k l m n o /0 

... 

•  Byte-wise memory access is known to be slow 

32x8bit load 



Optimizing compare operations 
•  How about vector string comparison, a la SSE? 

•  No Byte vectors on the GPU … but Integer vectors  



Optimizing compare operations 
•  How about vector string comparison, a la SSE? 

•  No Byte vectors on the GPU … but Integer vectors 



Optimizing compare operations 
•  How about vector string comparison, a la SSE? 

•  No Byte vectors on the GPU … but Integer vectors 

•  Loading character strings as int changes endianness 
•  CPU has bswap, on the GPU we have to write it: 

#define BSWP( x ) ; \ 
temp = ( x ) << 24 ; \ 
temp = temp | ( ( ( x ) << 8) & 0x00FF0000 ) ; \ 
temp = temp | ( ( ( unsigned ) ( x ) >> 8) & 0x0000FF00 ) ; \ 
x = temp | ( ( unsigned ) ( x ) >> 24 ) ; 



Optimizing compare operations 
•  Comparing integer vectors (bswap for <> skipped for clarity) 

__device__ int intcmp(uint4* a, uint4* b){ 
 
   int r =1; 
   if ((*a).x < (*b).x) 
      r=-1; 
   else if ((*a).x == (*b).x) {  
        if ((*a).y  < (*b).y)  

       r=-1; 
        else if ((*a).y == (*b).y) { 
             if ((*a).z  < (*b).z)  
                r=-1; 
             else if ((*a).z == (*b).z) { 
                  if ((*a).w < (*b).w) 
                     r=-1; 

              else if ((*a).w == (*b).w) 
                     r=0; 
            } 
        } 
   } 
   return r;  
} 

•  Still dereferencing 16 memory pointers ...  



Binary Search on the GPU – Why is it slow? 
•  Searching a large data set (512MB) with 33 million (225)  

 16-character strings 

•  With intcmp it's only marginally faster than a CPU implementation 
•  We still do pointer chasing, i.e. roundtrips to memory ... 



Reducing global memory access 
•  Intcmp is memory latency sensitive 

x 16 for each 
comparison !!! •  We can use shared memory like L1 



Reducing global memory access 
•  Intcmp is memory latency sensitive 

__shared__ uint4 cache[NUM_THREADS*2]; 
 
__device__ uint4* bsearchGPU( uint4 *key,  uint4 *base, 

  size_t nmemb,  size_t size) 
{ 
   uint4 *mid_point; 
   int  cmp; 
   cache[threadIdx.x*2]= *key; 
 
   while (nmemb > 0) { 
      mid_point = (uint4 *)base + size * (nmemb >> 1); 
      cache[threadIdx.x*2+1]= *mid_point; 
      if ((cmp = intcmp(&cache[threadIdx.x*2], 
                 &cache[threadIdx.x*2+1]))== 0) 

   return (uint4 *)mid_point; 

•  We can use shared memory like L1 
x 16 for each 
comparison !!! 



Binary Search on the GPU – optimized 
•  Searching a large data set (512MB) with 33 million (225)  

 16-character strings 

Is binary search optimal for a SIM[D/T] architecture ? 



GPU architecture reminder – SIMD/SIMT 

•  Inside Streaming Mulitprocessor 
–  Single Instruction Multiple Threads/Data (SIMT/SIMD) 
–  All PEs in 1SM execute same instruction or no-op 

(SIMD threads) 
–  Warps of 32 threads (or more to hide memory latency) 

 



What happens during Multi-threaded Binary Search ? 

 
 

•  Index:  a sorted char array 32 entries 

•  4 queries:  t , 8 , f , r 

•  4 processor cores:  P1-P4 

•  1 processor core – 1 search:  P0:t , P1:8 , P2:f , P3:r 

•  Theoretical worst-case execution time: log2(32)=5 

a b c d e f g h i j k l m n o p q r s t u v w x y z 4 5 6 7 8 9 



 
 

a b c d e f g h i j k l m n o p q r s t u v w x y z 4 5 6 7 8 9 

P0:t,  P1:8,  P2:f,  P3:r 

Iter. 1) 

P1:8,  P2:f P0:t,  P3:r 

Iter. 2) a b c d e f g h i j k l m n o p q r s t u v w x y z 4 5 6 7 8 9 

•  Index:  a sorted char array 32 entries 

•  4 queries:  t , 8 , f , r 

•  4 processor cores:  P1-P4 

•  1 processor core – 1 search:  P0:t , P1:8 , P2:f , P3:r 

•  Theoretical worst-case execution time: log2(32)=5 

What happens during Multi-threaded Binary Search ? 



 
 

P1:8,  P2:f P0:t,  P3:r 

Iter. 2) a b c d e f g h i j k l m n o p q r s t u v w x y z 4 5 6 7 8 9 

a b c d e f g h i j r s t u v w x y z 4 5 6 7 8 9 

P1:8 P0:t P2:f 

r s t u v 

P0:t 

a b 7 8 9 

P1:8 

Iter. 3) 

Iter. 4) 

Iter. 5) 7 8 9 

P1:8 

What happens during Multi-threaded Binary Search ? 



•  100% utilization requires                  
#cores concurrent queries 

•  Queries finishing early 

     " utilization < 100% 

•  Memory access collisions 

     " serialized memory access 

•  #memory accesses log2(n) 

•  More threads                            
" more results 

     " response time likely to be  
 worst case: log2(n) 

Can we improve the worst case? 

Multi-threaded Binary Search - Analysis 



Binary Search 
 
•  How Do you (efficiently) search an index? 

•  1st name = whom    
you are looking for? 

•  < , > ? 
•  Iterate 
 

–  Each iteration:  
#entries/2 (n/2) 

–  Total time:          
" log2(n) 

•  Open phone 
book ~middle 



Parallel (Binary) Search 
 
•  What if you have some friends (3) to help you ? 

•  Give each of them ¼ * 

* You probably want to tear it a little more intelligent than that, e.g. at the binding ;-) 

•  Divide et impera ! 

–  Each is using binary search takes log2(n/4) 
•  All can work in parallel " faster:  log2(n/4) < log2(n) 



Parallel (Binary) Search 
 
•  What if you have some friends (3) to help you ? 

•  Give each of them ¼ * 

* You probably want to tear it a little more intelligent than that, e.g. at the binding ;-) 

•  Divide et impera ! 

–  Each is using binary search takes log2(n/4) 
•  All can work in parallel " faster:  log2(n/4) < log2(n) 
•  3 of you are wasting time ! 



P-ary Search 
 
•  Divide et impera !! 

... 

•  How do we know who has the right piece ? 



P-ary Search 
 
•  Divide et impera !! 

... 

•  It's a sorted list: 
–  Look at first and last entry of a subset 
–  If first entry < searched name < last entry 

•  Redistribute 
•  Otherwise … throw it away 

–  Iterate 

•  How do we know who has the right piece ? 



P-ary Search 
 
•  What do we get? 

•  Each iteration: n/4                
" log4(n) 

•  Assuming redistribution      
time is negligible:                  
log4(n) < log2(n/4) < log2(n) 

•  But each does 2 lookups ! 
•  How time consuming are 

lookup and redistribution ? 

+ 



P-ary Search 
 
•  What do we get? 

•  Each iteration: n/4                
" log4(n) 

•  Assuming redistribution      
time is negligible:                  
log4(n) < log2(n/4) < log2(n) 

•  But each does 2 lookups ! 
•  How time consuming are 

lookup and redistribution ? 

+ 

memory 
access 

synchronization 

= = 



P-ary Search 
 
•  What do we get? 

+ 

•  Searching a database index can be implemented the same way 
–  Friends = Processor cores (threads) 
– Without destroying anything ;-) 

•  Each iteration: n/4                
" log4(n) 

•  Assuming redistribution      
time is negligible:                  
log4(n) < log2(n/4) < log2(n) 

•  But each does 2 lookups ! 
•  How time consuming are 

lookup and redistribution ? 

memory 
access 

synchronization 

= = 



P-ary Search - Implementation  
•  Strongly relies on fast synchronization 

•  friends = threads / vector elements 

 

 
        Iteration 1) 

 
        

a b c d e f g h i j k l m n o p q r s t u v w x y z 4 5 6 7 8 9 

P0: g P1: g P2: g P3: g 



P-ary Search - Implementation  
•  Strongly relies on fast synchronization 

•  friends = threads / vector elements 

 

 
        Iteration 1) 

 
        Iteration 2) 

a b c d e f g h i j k l m n o p q r s t u v w x y z 4 5 6 7 8 9 

P0: g P1: g P2: g P3: g 

 P0 P1 P2 P3: g 

c d e f g h i j k 



P-ary Search - Implementation  
•  Strongly relies on fast synchronization 

•  friends = threads / vector elements 

 

 
        Iteration 1) 

 
        Iteration 2) 

•  Synchronization ~ repartition cost 
•  pthreads ($$), cmpxchng($) 
•  SIMD SSE-vector, GPU threads via shared memory (~0) 

•  Implementation using a B-tree is similar and (obviously) faster 

a b c d e f g h i j k l m n o p q r s t u v w x y z 4 5 6 7 8 9 

P0: g P1: g P2: g P3: g 

 P0 P1 P2 P3: g 

c d e f g h i j k 



•  B-trees group pivot elements into nodes 

P-ary Search - Implementation  

d g h i j k o p q r 

4 c k s z 

5 8 9 a b 

6 7 

... 

P0P1P2P3 

P0P1P2P3 

•  Access to pivot elements is coalesced instead of a gather 
•  Nodes can also be mapped to 

–  Cache Lines (CSB+ trees) 
–  Vectors (SSE) 
–  #Threads per block 



P-ary Search on a sorted integer list – Implementation (1) 

__shared__ int offset; 
__shared__ int cache[BLOCKSIZE+2] 

 
__global__ void parySearchGPU(int� data, int length, 

         int� list_of_search_keys, int� results) 
 

   int start, sk; 
   int old_length = length; 

// initialize search range starting with the whole data set  
   if (threadIdx.x ==0 ) { 

      offset = 0; 
      // cache search key and upper bound in shared memory 

      cache[BLOCKSIZE] = 0x7FFFFFFF; 
      cache[BLOCKSIZE+1] = list_of_search_keys[blockIdx.x]; 

      results[blockIdx.x] = -1; 
   } 

   __syncthreads(); 
   // 

   sk = cache[BLOCKSIZE+1]; 



P-ary Search on a sorted integer list – Implementation (1) 

__shared__ int offset; 
__shared__ int cache[BLOCKSIZE+2] 

 
__global__ void parySearchGPU(int� data, int length, 

         int� list_of_search_keys, int� results) 
 

   int start, sk; 
   int old_length = length; 

// initialize search range starting with the whole data set  
   if (threadIdx.x ==0 ) { 

      offset = 0; 
      // cache search key and upper bound in shared memory 

      cache[BLOCKSIZE] = 0x7FFFFFFF; 
      cache[BLOCKSIZE+1] = list_of_search_keys[blockIdx.x]; 

      results[blockIdx.x] = -1; 
   } 

   __syncthreads(); 
   // 

   sk = cache[BLOCKSIZE+1]; Why? 



P-ary Search on a sorted list – Implementation (2) 
    // repeat until the #keys in the search range < #threads 
    while (length > BLOCKSIZE){ 

        // calculate search range for this thread 
 length = length/BLOCKSIZE; 

        if (length * BLOCKSIZE < old_length) length += 1; 
        old_length = length; 

 // why don’t we just use floating point? 
 start = offset + threadIdx.x * length; 

        // cache the boundary keys 
        cache[threadIdx.x] = data[start]; 

        __syncthreads(); 
        // if the searched key is within this thread's subset, 

        // make it the one for the next iteration 
        if (sk >= cache[threadIdx.x] && sk < cache[threadIdx.x+1]){ 

            offset = start; 
        } 

 __syncthreads(); 
  // all threads start next iteration with the new subset 

    } 



P-ary Search on a sorted list – Implementation (2) 
    // repeat until the #keys in the search range < #threads 
    while (length > BLOCKSIZE){ 

        // calculate search range for this thread 
 length = length/BLOCKSIZE; 

        if (length * BLOCKSIZE < old_length) length += 1; 
        old_length = length; 

 // why don’t we just use floating point? 
 start = offset + threadIdx.x * length; 

        // cache the boundary keys 
        cache[threadIdx.x] = data[start]; 

        __syncthreads(); 
        // if the searched key is within this thread's subset, 

        // make it the one for the next iteration 
        if (sk >= cache[threadIdx.x] && sk < cache[threadIdx.x+1]){ 

            offset = start; 
        } 

 __syncthreads(); 
  // all threads start next iteration with the new subset 

    } 

Why? 



P-ary Search on a sorted list – Implementation (3) 

    // last iteration 

    start = offset + threadIdx.x; 

    if (sk == data[start]) 

        results[blockIdx.x] = start; 

} 

 



P-ary Search – Analysis 

•  100% processor utilization for each query 

•  Multiple threads can find a result 
•  How does this impact correctness? 
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P-ary Search – Analysis 

•  100% processor utilization for each query 

•  Multiple threads can find a result 
•  How does this impact correctness? 

•  Convergence depends on #threads 

!  GTX285: 1 SM, 8 cores(threads) → p=8 

•  Better Response time 
• logp(n) vs log2(n) 
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P-ary Search – Analysis 

•  100% processor utilization for each query 

•  Multiple threads can find a result 
• Does not change correctness 

•  Convergence depends on #threads 

   GTX285: 1 SM, 8 cores(threads) → p=8 

•  Better Response time 
• logp(n) vs log2(n) 

•  More memory access 
• (p*2 per iteration) * logp(n) 
• Caching 
(p-1) * logp(n) vs. log2(n) 
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P-ary Search – Analysis 

•  100% processor utilization for each query 

•  Multiple threads can find a result 
• Does not change correctness 

•  Convergence depends on #threads 

   GTX285: 1 SM, 8 cores(threads) → p=8 

•  Better Response time 
• logp(n) vs log2(n) 

•  More memory access 
• p*2 per iteration * logp(n) 
• Caching 
(p-1) * logp(n) vs. log2(n) 

•  Lower Throughput 
• 1/logp(n)  vs  p/log2(n) 
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P-ary Search (GPU) – Throughput 

Searching a 512MB data set with 134mill. 4-byte integer entries, 
Results for a nVidia GT200b, 1.5GHz, GDDR3 1.2GHz. 

•  Superior throughput compared to conventional algorithms 

#parallel queries 



P-ary Search (GPU) – Response Time 

Searching a 512MB data set with 134mill. 4-byte integer entries, 
Results for a nVidia GT200b, 1.5GHz, GDDR3 1.2GHz. 

•  Response time is workload independent for B-tree implementation  
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#parallel queries 



P-ary Search (GPU) – Scalability  

64K search queries against a 512MB data set with 134mill. 4-byte integer entries, 
Results for a nVidia GT200b, 1.5GHz, GDDR3 1.2GHz. 

•  GPU Implementation using SIMT (SIMD threads) 
•  Scalability with increasing #threads (P) 



64K search queries against a 512MB data set with 134mill. 4-byte integer entries, 
Results for a nVidia GT200b, 1.5GHz, GDDR3 1.2GHz. 

•  GPU Implementation using SIMT (SIMD threads) 
•  Scalability with increasing #threads (P) 

P-ary Search (GPU) – Scalability  
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Questions? 


