
© 2013 IBM Corporation

Programming GPUs for non-graphics workloads
– from General Purpose GPU (GPGPU) to GPU compute

Tim Kaldewey

Apr 21 2014

Tim Kaldewey
Research Staff Member
IBM TJ Watson Research Center
tkaldew@us.ibm.com

Disclaimer
The author's views expressed in this presentation do not necessarily reflect
the views of IBM.

Acknowledgements
I would like to thank all my co-authors from IBM and my prior positions at Oracle and
UCSC whose work I am showing in this presentation.
I would also like to thank Patrick Cozzi for inviting me to teach in his classes multiple
years in a row and for letting me re-use his introductory material.

3

Agenda

Programming GPUs for non-graphics workloads

■  GPGPU
■  A brief introduction
■  Index Search implemented using openGL and Cg

■  Modern GPU computing with CUDA
■  A very brief intro to CUDA
■  Index Search in CUDA
■  Performance optimizations
■  A new GPU-optimal (index) search algorithm

GPU Programming pre-CUDA

.

! The graphics pipeline

•  Vertex Processor - geometric transformations of vertices in 3D space
•  Rasterizer - transforms geometric primitives (triangles) into pixels
•  Fragment Processor – colors the pixels
•  Programmable were only vertex and fragment processors

5

GPGPU Programming

■  GPGPU(.org)started in 2002 by Mark Harris

■  Using Graphics APIs to solve non-graphics tasks
■  E.g. OpenGL & Cg

■  Required use of graphics APIs
–  OpenGL for data transfers
–  Cg to “program”
–  Operations:

•  geometric transformations using the vertex processor
(scatter)

•  coloring using the fragment processor (gather)
–  Vertices are stored as float4 (x,y,z,w)
–  Textures = 2D arrays of float4 vectors (r,g,b,a)
–  Compute = drawing

GPGPU Programming

.

Steps for GPGU compute:

1.  Organize data in a screen size array

2.  Set up a viewport with 1:1 pixel:texel ratio

3.  Create and bind texture of the same size

4.  Download input data into texture

5.  Bind (load) fragment program (computational kernel)

6.  Render a screen size quad to perform computation, i.e. run
fragment program on each Pixel

7.  Read back results

Let’s Pick a Simple, but Omnipresent Task … Search
•  Why Search?

•  Honestly, how many times a day do you visit:

?

Let’s Pick a Simple, but Omnipresent Task … Search
•  Why Search?

•  Honestly, how many times a day do you visit:

•  How do you search (millions of) documents efficiently?

•  Use an inverted index

?

Adam
Bethlehem
Character

Drachenflieger
Eva
Flughafenbahnhof
Grabdenkmal
Haubentaucher

1,2,3
4,5
1,2,3,301,5790

301,317,5790
1,2
5790
2,5790
300,5790

Keyword DocID

so
rte

d

Searching an Index
•  The task: search an inverted (document) index

Adam
Bethlehem
Character

Drachenflieger
Eva
Flughafenbahnhof
Grabdenkmal
Haubentaucher

1,2,3
4,5
1,2,3,301,5790

301,317,5790
1,2
5790
2,5790
300,5790

Keyword DocID

so
rte

d

16 characters max.

Can be stored
separately.
Lookup by
position.

Searching an Index

.

•  The task: search an inverted (document) index

char searchkey[16]= “Flughafenbahnhof”;
result = bsearch((void*)&searchkey,index,

 numentries,sizeof(char)*16,
 (int(*)(const void*,const void*)) strcmp);

•  On the CPU we use a few library calls and we are done

Adam
Bethlehem
Character

Drachenflieger
Eva
Flughafenbahnhof
Grabdenkmal
Haubentaucher

1,2,3
4,5
1,2,3,301,5790

301,317,5790
1,2
5790
2,5790
300,5790

Keyword DocID

so
rte

d

16 characters max.

GPGPU Search – Data Format

.

•  Storing data
–  Obviously you want 1:1 pixel-to-texture element (texel) ratio
 unless you would like to play Scrabble ;-)

–  Ascii mapped to
0.0 to 255.0

–  1 pixel stores 4
chars (better?)

–  Mark beginning of
words with 0.1

–  Need to store
pointer/position in
document index
ptr

–  Align word
boundaries with
pixel boundaries r

–  Null-terminated
strings 0.0

GPGPU Search – Data Storage

.

•  Store data in texture

GPGPU Search in Action

.

•  Comparing search key with stored strings

•  Simple test for equality
–  Compare floats directly
–  Color by color

GPGPU Search Code

.

GPGPU Search – Code Execution

.

•  To execute the code:

•  Result uses a magic number (not used for ASCII mapping) 0.9

•  After completion Result is anywhere in the texture

•  Copying whole texture back to main memory inefficient

•  Reduction

GPGPU Search – Reduction

•  To execute the code:

•  Result uses a magic number (not used for ASCII mapping) 0.9

•  After completion Result is anywhere in the texture

•  Copying whole texture back to main memory inefficient

•  Reduction:

GPGPU Search – Reduction

.

•  Reduction means gathering “neighborhood” data

GPGPU Search – Reduction

.

•  Repeat until we end up with a single pixel

•  Search result will be in top left pixel

GPGPU Search - Performance

.

•  10k Berkeley DB index operations (insert delete), all require
searching the index first, Test001.tcl

•  Berkley DB uses B-trees, which needed to be flattened for the GPU

Time required for 10k insert/delete operations using a dual-core 2.2ghz AMD Opteron vs.
an nVidia 7900GS with 7 vertex and 20 fragment processors.

GPGPU Search - Performance

.

•  10k Berkeley DB index operations (insert delete), all require
searching the index first, Test001.tcl

•  Berkley DB uses B-trees, which needed to be flattened for the GPU

Time required for 10k insert/delete operations using a dual-core 2.2ghz AMD Opteron vs.
an nVidia 7900GS with 7 vertex and 20 fragment processors.

GPGPU Search – Where does time go ?

.

•  Data Transfer ~40%
–  More efficient data mapping, e.g. 4 char = 1 float

•  CUDA made GPGPU obsolete ...

Time required for 10k insert/delete operations using a dual-core 2.2ghz AMD Opteron vs.
an nVidia 7900GS with 7 vertex and 20 fragment processors.

problematic?

Agenda

Programming GPUs for non-graphics workloads

■  GPGPU
■  A brief introduction
■  Index Search implemented using openGL and Cg

■  Modern GPU computing with CUDA
■  A very brief intro to CUDA
■  Index Search in CUDA
■  Performance optimizations
■  A new GPU-optimal (index) search algorithm

CUDA Key Concepts – Architecture

CUDA Key Concepts – Function Classifiers

•  __global__
•  callable from host
•  must return void

•  __device__
•  callable only from device
•  function inlined by default (newer CUDA versions)

•  Global and device functions
•  No recursion (except Fermi)
•  No static variables
•  No malloc()
•  Careful with function calls through pointers (Fermi)
•  Cannot access host memory “directly”

CUDA Key Concepts – Memory address spaces

•  Host (CPU) and Device (GPU) have separate (memory) address spaces
•  Data needs to be “transferred” to/from the GPU
•  Simplest way is to explicitly copy data to/from device memory
•  Data copy always initiated by host

•  Specify direction of data copy
•  ToDevice for input data
•  ToHost for results

•  When calling __global__ function pass dst pointer

cudaMemcpy(void* dst,
 const void* src,
 size_t count,
 cudaMemcopyHostToDevice | cudaMemcopyDeviceToHost
)

CUDA Key concepts – Vector types

! char[1–4], uchar[1–4],short[1–4], ushort[1–4],int[1–
4], uint[1–4], long[1–4], ulong[1–4], longlong[1–2],
ulonglong[1–2]

! float[1–4], double[1-2]

! dim3
! Available in host and device code
! Construct with make_<type name>
int2 i2 = make_int2(1, 2);
float4 f4 = make_float4(
 1.0f, 2.0f, 3.0f, 4.0f);
 ! Access with .x, .y, .z, and .w

! No .r, .g, .b, .a, etc. like OpenGL, Cg

int2 i2 = make_int2(1, 2);
int x = i2.x;
int y = i2.y

CUDA Key Concepts – Invoking GPU Functions (Kernels)

•  Calling GPU (__global__) function requires to specify
•  grid dimensions – How many blocks of threads to launch

•  1 block executes on 1 streaming multiprocessor to completion
•  block dimensions – How many threads are in a block

•  threads execute in groups of 32 (warps) in SIM[T/D] fashion
•  #threads > warp can be synchronized with __syncthreads()

__global__ void gpu_Kernel(int a, ...){
...
}
...

dim3 grid(14,0,0);
Dim3 block(192,0,0);
gpu_Kernel<<<grid,block>>>(42,...);

CUDA Key Concepts – “Global” Variables

•  __device__ variables
•  stored in device memory
•  accessible from all blocks

•  __shared__ variables
•  stored in shared on-chip memory (space constraints?)
•  accessible only within a block

__device__ int a_dev;
...
__shared__ int a_smem;

Index search on the CPU

.

•  On the CPU we use a few library calls and we are done

Adam
Bethlehem
Character

Drachenflieger
Eva
Flughafenbahnhof
Grabdenkmal
Haubentaucher

1,2,3
4,5
1,2,3,301,5790

301,317,5790
1,2
5790
2,5790
300,5790

Keyword

so
rte

d

16 characters max.

char indexCPU[4711];
indexCPU[0]
indexCPU[16]
indexCPU[32]
...

char searchkey[16]= “Flughafenbahnhof”;
result = bsearch((void*)searchkey,indexCPU,

 numentries,sizeof(char)*16,
 (int(*)(const void*,const void*)) strcmp);

A Simple implementation of (index) search

.
•  Can we just port a CPU implementation?

•  On the CPU we use a few library calls and we are done

Adam
Bethlehem
Character

Drachenflieger
Eva
Flughafenbahnhof
Grabdenkmal
Haubentaucher

1,2,3
4,5
1,2,3,301,5790

301,317,5790
1,2
5790
2,5790
300,5790

Keyword

so
rte

d

16 characters max.

char indexCPU[4711];
indexCPU[0]
indexCPU[16]
indexCPU[32]
...

char searchkey[16]= “Flughafenbahnhof”;
result = bsearch((void*)searchkey,indexCPU,

 numentries,sizeof(char)*16,
 (int(*)(const void*,const void*)) strcmp);

Index search on the CPU

.

char* indexGPU;
char* searchkeysGPU;
char* resultsGPU;
// copy the data
cudaMalloc((void**)&indexGPU, sizeof(char)*wordlength*entries);
cudaMemcpy(indexGPU, indexCPU, sizeof(char)*wordlength*entries,

 CudaMemcpyHostToDevice);
// copy the searchkey(s)
cudaMalloc((void**)&searchkeysGPU, …
cudaMemcpy(searchkeysGPU, searchkeysCPU,
 sizeof(char)*wordlength*numsearches,

 CudaMemcpyHostToDevice);
// make room for the results
cudaMalloc((void**)&resultsGPU, …

•  Get the data to the GPU

A Simple GPU implementation

.
•  Know your hardware (GTX 285, 30 SMs, 8 cores each, 240 cores)

• Set up an execution configuration & call global function

dim3 Dg = dim3(30,0,0);
dim3 Db = dim3(8,0,0);
searchGPU< < < Dg,Db > > >(indexGPU, entries...

char* indexGPU;
char* searchkeysGPU;
char* resultsGPU;
// copy the data
cudaMalloc((void**)&indexGPU, sizeof(char)*wordlength*entries);
cudaMemcpy(indexGPU, indexCPU, sizeof(char)*wordlength*entries,

 CudaMemcpyHostToDevice);
// copy the searchkey(s)
cudaMalloc((void**)&searchkeysGPU, …
cudaMemcpy(searchkeysGPU, searchkeysCPU,
 sizeof(char)*wordlength*numsearches,

 CudaMemcpyHostToDevice);
// make room for the results
cudaMalloc((void**)&resultsGPU, …

•  Get the data to the GPU

A Simple GPU implementation

•  The GPU kernel

__global__ void searchGPU(char* index, int entries, int wordlength,
 char* search_keys, int* results) {

 char* res;
 // use block and thread numbers for indexing
 res = bsearch(&search_keys[((blockIdx.x*BLOCK_SIZE)+threadIdx.x)

 *wordlength],
 index,
 entries,
 wordlength);

 // use block and thread numbers for indexing
 results[(blockIdx.x*BLOCK_SIZE)+threadIdx.x] = (res-data)/

 MAX_WORD_LENGTH;
}

A Simple GPU implementation

•  The GPU kernel

•  There is no libc on the GPU =(
•  Just stick __device__ in front of the libc code?
•  “bsearch” is recursive, but there is no recursion on the GPU
" Write a iterative one ...

__global__ void searchGPU(char* index, int entries, int wordlength,
 char* search_keys, int* results) {

 char* res;
 // use block and thread numbers for indexing
 res = bsearch(&search_keys[((blockIdx.x*BLOCK_SIZE)+threadIdx.x)

 *wordlength],
 index,
 entries,
 wordlength);

 // use block and thread numbers for indexing
 results[(blockIdx.x*BLOCK_SIZE)+threadIdx.x] = (res-data)/

 MAX_WORD_LENGTH;
}

A Simple GPU binary search

.

•  Still need strcmp

__device__ char* bsearchGPU(char *key, char *base, int n, int size){
 char *mid_point;
 int cmp;

 while (n > 0) {
 mid_point = (char *)base + size * (n >> 1);
 if ((cmp = strcmpGPU(key, mid_point)) == 0)
 return (char *)mid_point;
 if (cmp > 0) {
 base = (char *)mid_point + size;
 n = (n - 1) >> 1;
 } // cmp < 0
 else n >>= 1;
 }
 return (char *)NULL;
}

A Simple GPU binary search

.

•  Still need strcmp

•  Again, stick __device__ in front of the libc code
__device__ int strcmpGPU(char* s1, char* s2){

 while (*s1 == *s2++)
 if (*s1++ == 0) return 0;
 return (*s1 - *(s2 - 1));

}

__device__ char* bsearchGPU(char *key, char *base, int n, int size){
 char *mid_point;
 int cmp;

 while (n > 0) {
 mid_point = (char *)base + size * (n >> 1);
 if ((cmp = strcmpGPU(key, mid_point)) == 0)
 return (char *)mid_point;
 if (cmp > 0) {
 base = (char *)mid_point + size;
 n = (n - 1) >> 1;
 } // cmp < 0
 else n >>= 1;
 }
 return (char *)NULL;
}

Binary Search on the GPU
•  Searching a large data set (512MB) with 33 million (225)

 16-character strings

Binary Search on the GPU – Why is it slow?
•  Searching a large data set (512MB) with 33 million (225)

 16-character strings

•  It's slower than a CPU implementation for all data set sizes!
–  Let's try some optimizations ...

Search requires to compare

! Search naturally requires MANY comparisons

! The strcmp() library function:
int strcmp(const char* s1, const char* s2){

 while (*s1 == *s2++)
 if (*s1++ == 0)return 0;
 return (*s1 - *(s2 - 1));

}

a b c d e f g h i j k l m n o /0

a b c d e f g h i j k l m n o /0

...

Search requires to compare

! Search naturally requires MANY comparisons

! The strcmp() library function:
int strcmp(const char* s1, const char* s2){

 while (*s1 == *s2++)
 if (*s1++ == 0)return 0;
 return (*s1 - *(s2 - 1));

}

a b c d e f g h i j k l m n o /0

a b c d e f g h i j k l m n o /0

...

•  Byte-wise memory access is known to be slow

32x8bit load

Optimizing compare operations
•  How about vector string comparison, a la SSE?

•  No Byte vectors on the GPU … but Integer vectors

Optimizing compare operations
•  How about vector string comparison, a la SSE?

•  No Byte vectors on the GPU … but Integer vectors

Optimizing compare operations
•  How about vector string comparison, a la SSE?

•  No Byte vectors on the GPU … but Integer vectors

•  Loading character strings as int changes endianness
•  CPU has bswap, on the GPU we have to write it:

#define BSWP(x) ; \
temp = (x) << 24 ; \
temp = temp | (((x) << 8) & 0x00FF0000) ; \
temp = temp | (((unsigned) (x) >> 8) & 0x0000FF00) ; \
x = temp | ((unsigned) (x) >> 24) ;

Optimizing compare operations
•  Comparing integer vectors (bswap for <> skipped for clarity)

__device__ int intcmp(uint4* a, uint4* b){

 int r =1;
 if ((*a).x < (*b).x)
 r=-1;
 else if ((*a).x == (*b).x) {
 if ((*a).y < (*b).y)

 r=-1;
 else if ((*a).y == (*b).y) {
 if ((*a).z < (*b).z)
 r=-1;
 else if ((*a).z == (*b).z) {
 if ((*a).w < (*b).w)
 r=-1;

 else if ((*a).w == (*b).w)
 r=0;
 }
 }
 }
 return r;
}

•  Still dereferencing 16 memory pointers ...

Binary Search on the GPU – Why is it slow?
•  Searching a large data set (512MB) with 33 million (225)

 16-character strings

•  With intcmp it's only marginally faster than a CPU implementation
•  We still do pointer chasing, i.e. roundtrips to memory ...

Reducing global memory access
•  Intcmp is memory latency sensitive

x 16 for each
comparison !!! •  We can use shared memory like L1

Reducing global memory access
•  Intcmp is memory latency sensitive

__shared__ uint4 cache[NUM_THREADS*2];

__device__ uint4* bsearchGPU(uint4 *key, uint4 *base,

 size_t nmemb, size_t size)
{
 uint4 *mid_point;
 int cmp;
 cache[threadIdx.x*2]= *key;

 while (nmemb > 0) {
 mid_point = (uint4 *)base + size * (nmemb >> 1);
 cache[threadIdx.x*2+1]= *mid_point;
 if ((cmp = intcmp(&cache[threadIdx.x*2],
 &cache[threadIdx.x*2+1]))== 0)

 return (uint4 *)mid_point;

•  We can use shared memory like L1
x 16 for each
comparison !!!

Binary Search on the GPU – optimized
•  Searching a large data set (512MB) with 33 million (225)

 16-character strings

Is binary search optimal for a SIM[D/T] architecture ?

GPU architecture reminder – SIMD/SIMT

•  Inside Streaming Mulitprocessor
–  Single Instruction Multiple Threads/Data (SIMT/SIMD)
–  All PEs in 1SM execute same instruction or no-op

(SIMD threads)
–  Warps of 32 threads (or more to hide memory latency)

What happens during Multi-threaded Binary Search ?

•  Index: a sorted char array 32 entries

•  4 queries: t , 8 , f , r

•  4 processor cores: P1-P4

•  1 processor core – 1 search: P0:t , P1:8 , P2:f , P3:r

•  Theoretical worst-case execution time: log2(32)=5

a b c d e f g h i j k l m n o p q r s t u v w x y z 4 5 6 7 8 9

a b c d e f g h i j k l m n o p q r s t u v w x y z 4 5 6 7 8 9

P0:t, P1:8, P2:f, P3:r

Iter. 1)

P1:8, P2:f P0:t, P3:r

Iter. 2) a b c d e f g h i j k l m n o p q r s t u v w x y z 4 5 6 7 8 9

•  Index: a sorted char array 32 entries

•  4 queries: t , 8 , f , r

•  4 processor cores: P1-P4

•  1 processor core – 1 search: P0:t , P1:8 , P2:f , P3:r

•  Theoretical worst-case execution time: log2(32)=5

What happens during Multi-threaded Binary Search ?

P1:8, P2:f P0:t, P3:r

Iter. 2) a b c d e f g h i j k l m n o p q r s t u v w x y z 4 5 6 7 8 9

a b c d e f g h i j r s t u v w x y z 4 5 6 7 8 9

P1:8 P0:t P2:f

r s t u v

P0:t

a b 7 8 9

P1:8

Iter. 3)

Iter. 4)

Iter. 5) 7 8 9

P1:8

What happens during Multi-threaded Binary Search ?

•  100% utilization requires
#cores concurrent queries

•  Queries finishing early

 " utilization < 100%

•  Memory access collisions

 " serialized memory access

•  #memory accesses log2(n)

•  More threads
" more results

 " response time likely to be
 worst case: log2(n)

Can we improve the worst case?

Multi-threaded Binary Search - Analysis

Binary Search

•  How Do you (efficiently) search an index?

•  1st name = whom
you are looking for?

•  < , > ?
•  Iterate

–  Each iteration:
#entries/2 (n/2)

–  Total time:
" log2(n)

•  Open phone
book ~middle

Parallel (Binary) Search

•  What if you have some friends (3) to help you ?

•  Give each of them ¼ *

* You probably want to tear it a little more intelligent than that, e.g. at the binding ;-)

•  Divide et impera !

–  Each is using binary search takes log2(n/4)
•  All can work in parallel " faster: log2(n/4) < log2(n)

Parallel (Binary) Search

•  What if you have some friends (3) to help you ?

•  Give each of them ¼ *

* You probably want to tear it a little more intelligent than that, e.g. at the binding ;-)

•  Divide et impera !

–  Each is using binary search takes log2(n/4)
•  All can work in parallel " faster: log2(n/4) < log2(n)
•  3 of you are wasting time !

P-ary Search

•  Divide et impera !!

...

•  How do we know who has the right piece ?

P-ary Search

•  Divide et impera !!

...

•  It's a sorted list:
–  Look at first and last entry of a subset
–  If first entry < searched name < last entry

•  Redistribute
•  Otherwise … throw it away

–  Iterate

•  How do we know who has the right piece ?

P-ary Search

•  What do we get?

•  Each iteration: n/4
" log4(n)

•  Assuming redistribution
time is negligible:
log4(n) < log2(n/4) < log2(n)

•  But each does 2 lookups !
•  How time consuming are

lookup and redistribution ?

+

P-ary Search

•  What do we get?

•  Each iteration: n/4
" log4(n)

•  Assuming redistribution
time is negligible:
log4(n) < log2(n/4) < log2(n)

•  But each does 2 lookups !
•  How time consuming are

lookup and redistribution ?

+

memory
access

synchronization

= =

P-ary Search

•  What do we get?

+

•  Searching a database index can be implemented the same way
–  Friends = Processor cores (threads)
– Without destroying anything ;-)

•  Each iteration: n/4
" log4(n)

•  Assuming redistribution
time is negligible:
log4(n) < log2(n/4) < log2(n)

•  But each does 2 lookups !
•  How time consuming are

lookup and redistribution ?

memory
access

synchronization

= =

P-ary Search - Implementation
•  Strongly relies on fast synchronization

•  friends = threads / vector elements

 Iteration 1)

a b c d e f g h i j k l m n o p q r s t u v w x y z 4 5 6 7 8 9

P0: g P1: g P2: g P3: g

P-ary Search - Implementation
•  Strongly relies on fast synchronization

•  friends = threads / vector elements

 Iteration 1)

 Iteration 2)

a b c d e f g h i j k l m n o p q r s t u v w x y z 4 5 6 7 8 9

P0: g P1: g P2: g P3: g

 P0 P1 P2 P3: g

c d e f g h i j k

P-ary Search - Implementation
•  Strongly relies on fast synchronization

•  friends = threads / vector elements

 Iteration 1)

 Iteration 2)

•  Synchronization ~ repartition cost
•  pthreads ($$), cmpxchng($)
•  SIMD SSE-vector, GPU threads via shared memory (~0)

•  Implementation using a B-tree is similar and (obviously) faster

a b c d e f g h i j k l m n o p q r s t u v w x y z 4 5 6 7 8 9

P0: g P1: g P2: g P3: g

 P0 P1 P2 P3: g

c d e f g h i j k

•  B-trees group pivot elements into nodes

P-ary Search - Implementation

d g h i j k o p q r

4 c k s z

5 8 9 a b

6 7

...

P0P1P2P3

P0P1P2P3

•  Access to pivot elements is coalesced instead of a gather
•  Nodes can also be mapped to

–  Cache Lines (CSB+ trees)
–  Vectors (SSE)
–  #Threads per block

P-ary Search on a sorted integer list – Implementation (1)

__shared__ int offset;
__shared__ int cache[BLOCKSIZE+2]

__global__ void parySearchGPU(int� data, int length,

 int� list_of_search_keys, int� results)

 int start, sk;
 int old_length = length;

// initialize search range starting with the whole data set
 if (threadIdx.x ==0) {

 offset = 0;
 // cache search key and upper bound in shared memory

 cache[BLOCKSIZE] = 0x7FFFFFFF;
 cache[BLOCKSIZE+1] = list_of_search_keys[blockIdx.x];

 results[blockIdx.x] = -1;
 }

 __syncthreads();
 //

 sk = cache[BLOCKSIZE+1];

P-ary Search on a sorted integer list – Implementation (1)

__shared__ int offset;
__shared__ int cache[BLOCKSIZE+2]

__global__ void parySearchGPU(int� data, int length,

 int� list_of_search_keys, int� results)

 int start, sk;
 int old_length = length;

// initialize search range starting with the whole data set
 if (threadIdx.x ==0) {

 offset = 0;
 // cache search key and upper bound in shared memory

 cache[BLOCKSIZE] = 0x7FFFFFFF;
 cache[BLOCKSIZE+1] = list_of_search_keys[blockIdx.x];

 results[blockIdx.x] = -1;
 }

 __syncthreads();
 //

 sk = cache[BLOCKSIZE+1]; Why?

P-ary Search on a sorted list – Implementation (2)
 // repeat until the #keys in the search range < #threads
 while (length > BLOCKSIZE){

 // calculate search range for this thread
 length = length/BLOCKSIZE;

 if (length * BLOCKSIZE < old_length) length += 1;
 old_length = length;

 // why don’t we just use floating point?
 start = offset + threadIdx.x * length;

 // cache the boundary keys
 cache[threadIdx.x] = data[start];

 __syncthreads();
 // if the searched key is within this thread's subset,

 // make it the one for the next iteration
 if (sk >= cache[threadIdx.x] && sk < cache[threadIdx.x+1]){

 offset = start;
 }

 __syncthreads();
 // all threads start next iteration with the new subset

 }

P-ary Search on a sorted list – Implementation (2)
 // repeat until the #keys in the search range < #threads
 while (length > BLOCKSIZE){

 // calculate search range for this thread
 length = length/BLOCKSIZE;

 if (length * BLOCKSIZE < old_length) length += 1;
 old_length = length;

 // why don’t we just use floating point?
 start = offset + threadIdx.x * length;

 // cache the boundary keys
 cache[threadIdx.x] = data[start];

 __syncthreads();
 // if the searched key is within this thread's subset,

 // make it the one for the next iteration
 if (sk >= cache[threadIdx.x] && sk < cache[threadIdx.x+1]){

 offset = start;
 }

 __syncthreads();
 // all threads start next iteration with the new subset

 }

Why?

P-ary Search on a sorted list – Implementation (3)

 // last iteration

 start = offset + threadIdx.x;

 if (sk == data[start])

 results[blockIdx.x] = start;

}

P-ary Search – Analysis

•  100% processor utilization for each query

•  Multiple threads can find a result
•  How does this impact correctness?

c d e f g h i j

 P0 P1 P2 P3: g

k

P-ary Search – Analysis

•  100% processor utilization for each query

•  Multiple threads can find a result
•  How does this impact correctness?

•  Convergence depends on #threads

!  GTX285: 1 SM, 8 cores(threads) → p=8

•  Better Response time
• logp(n) vs log2(n)

c d e f g h i j

 P0 P1 P2 P3: g

k

P-ary Search – Analysis

•  100% processor utilization for each query

•  Multiple threads can find a result
• Does not change correctness

•  Convergence depends on #threads

 GTX285: 1 SM, 8 cores(threads) → p=8

•  Better Response time
• logp(n) vs log2(n)

•  More memory access
• (p*2 per iteration) * logp(n)
• Caching
(p-1) * logp(n) vs. log2(n)

c d e f g h i j

PE0 PE1 PE2 PE3: g

k

P-ary Search – Analysis

•  100% processor utilization for each query

•  Multiple threads can find a result
• Does not change correctness

•  Convergence depends on #threads

 GTX285: 1 SM, 8 cores(threads) → p=8

•  Better Response time
• logp(n) vs log2(n)

•  More memory access
• p*2 per iteration * logp(n)
• Caching
(p-1) * logp(n) vs. log2(n)

•  Lower Throughput
• 1/logp(n) vs p/log2(n)

c d e f g h i j

PE0 PE1 PE2 PE3: g

k

Th
ro

ug
hp

ut
 [R

es
ul

ts
/U

ni
t o

f T
im

e]

P-ary Search (GPU) – Throughput

Searching a 512MB data set with 134mill. 4-byte integer entries,
Results for a nVidia GT200b, 1.5GHz, GDDR3 1.2GHz.

•  Superior throughput compared to conventional algorithms

#parallel queries

P-ary Search (GPU) – Response Time

Searching a 512MB data set with 134mill. 4-byte integer entries,
Results for a nVidia GT200b, 1.5GHz, GDDR3 1.2GHz.

•  Response time is workload independent for B-tree implementation

Av
er

ag
e

R
es

po
ns

e
Ti

m
e

[µ
s]

#parallel queries

P-ary Search (GPU) – Scalability

64K search queries against a 512MB data set with 134mill. 4-byte integer entries,
Results for a nVidia GT200b, 1.5GHz, GDDR3 1.2GHz.

•  GPU Implementation using SIMT (SIMD threads)
•  Scalability with increasing #threads (P)

64K search queries against a 512MB data set with 134mill. 4-byte integer entries,
Results for a nVidia GT200b, 1.5GHz, GDDR3 1.2GHz.

•  GPU Implementation using SIMT (SIMD threads)
•  Scalability with increasing #threads (P)

P-ary Search (GPU) – Scalability

79

Questions?

