Rendering in Marmoset
Toolbag

A Game Engine For Artists

Penn Engineering CIS 700

Marmoset

e Hi, I'm Jeff Russell (@)3ffdr)
e | work at Marmoset (www.marmoset.co)

Started early 2012

3 partners + 1-3 contractors
All remote

The 't is not silent

We do graphics stuff!

o o o o O

http://www.marmoset.co

Marmoset Toolbag

Toolbag is a standalone real-time renderer for artist use
“Game Engine for Artists”

WYSIWYG final renders

Basic scene, lighting, material editing

Used for sharing, preview, presentation, material setup
Output options for high quality screenshots, turntables
O More to come ;)

Marmoset Toolbag

e Grew from a simpler in-house game dev tool
o “Darkest of Days” at 8monkey

e Joe Wilson: “You guys should sell this”
e Initially free, now $129 / seat
e We've grown mainly by word of mouth

O www.polycount.com -__?l
’/?xo.«i
! $: £ P
e sy &

http://www.polycount.com
http://www.polycount.com

Marmoset Toolbag

Version 2 (December 2013) is a full rewrite
Windows 7/8 and OS X 10.9

64-bit only, C++ |
Rough size:

O Toolbag: ~60k lines ks R\
o |ibCPR: ~15k %
o Shaders: ~5k

o Server: ~3k

]
el
‘\\

Demo!

Render Overview

e Toolbag 2 is a forward renderer (mostly), not deferred
e Need the flexibility of completely different shaders

o skin, cloth, anisotropy, different spec models

e Dynamic light sources and shadow casting is "sort of
deferred”

Render Order

Depth/normal pass

Reflection ray casts

SSAO

Main IBL pass

Reflection ray gather & composite
Dynamic lights & shadows
Wireframes & misc.

Post effects, AA & present

Depending on settings, only 4 & 8 will always run

00 = OPROIE S CORND

Material System

e Swappable subroutines for various shading inputs

e Subroutines mainly focus on varying workflows
o e.g. spec mask vs. metalness vs. IOR

e Ul maps to shader subroutines more or less directly
e NOT a full shader graph system

o User-friendly and approachable is a primary design goal

e Several million shader permutations
Requires runtime compilation as user edits
HLSL builds really slowly, especially loops >:|
If | were Microsoft | would work on this, but hey

O
O
O
o Hash & cache to disk for later reuse, so only first hit is slow

Material System

e Quick list of some current modules:

@)

O 0O 0O 0O o o O o O O O

Subdivision: Flat, PN Triangles

Displacement: Height, Vector

Surface: Normal Map, Detail Normal Map, Traced Parallax
Microsurface: Gloss/Roughness

Albedo: Albedo Map, Vertex Color

Diffusion: Unlit, Lambertian, Microfiber, Skin
Reflectivity: Specular Map, Matlaness Map, IOR
Reflection: Mirror, Blinn-Phong, Anisotropic
Occlusion: Occlusion Map, Vertex AO
Emissive: Emissive Map, Heat

Transparency: Cutout, Dither, Blend

+ some extras (e.g. Dota 2, Substance support)

CPR

e Toolbag uses Direct3D 11 (Win) & OpenGL 3/4 (Mac)

e Future APIs?
o GLES, WebGL, Consoles? Direct3D 12? OpenGL 5?7

e Need to avoid rewriting everything for each platform!
o Including shaders!

e How can we do this?

CPR

e CPR (Cross-Platform Render)
e In-house graphics abstraction library

e Supports backends for:
o Direct3D 11
o OpenGL 3
o OpenGLES 2
o No-Op
e Recently dropped (we consider these dead):
o Direct3D 9 (win + xbox 360)

o OpenGL 2
o GCM (ps3)

CPR

e CPRis a full wrapper
e Graphics API fully hidden

o not even #include
e EXxposes similar primitives

o Buffers, textures, render states,
shaders, draw commands

e Statically linked C++
e Basically a new API of its own

//sample (from DOF code):

cpr::
cpr:

cpr:
cpr::

cpr:
cpr:
cpr:

cpr::
cpr:
cpr:
cpr:

Render:
:Render:

:Render:
Render:

:Render:
:Render:
:Render:

Render:
:Render:
:Render:
:Render:

:setPrimitiveType(cpr::PRIMITIVE_TYPE_POINTS);
:setVertexLayout(&mDOFVertexLayout);

:pushBlendState(&mBlendAdd);
:setClearColor(0., 0.f, 0., 0.T);

:clear(cpr::CLEAR_COLOR_BUFFER);
:setParam2f(mDOFParams.bokehSize, bs_far);
:drawIndexed(w*h);

:setFrameBuffer(&mDOFNearBuffer);

:clear(cpr::CLEAR_COLOR_BUFFER);
:setParam2f(mDOFParams.bokehSize, bs_near);
:drawIndexed(w*h);

CPR

e [nterface must match common subset of backends

e Fortunately this subset is large
o Mostly what you'd be working with anyway for cross-platform dev

e Opportunity to design our own interface to gfx
e Potential for all kinds of debugging, verification, etc.

CPR

e \Which shader language to use?
o GLSL?
o HLSL?
o NVIDIA’s Cg is dead :-/

e EXxact language conversion is nontrivial
o Existing solutions often don’t expose newest features

e Any compiler must work on all platforms
o Precompilation not possible for us

CPR

e GLSL and HLSL are similar & have good preprocessors

e Insert macros to give both sets of key words
o e.g. both float4 and vec4, lerp and mix, etc.

e Insert more macros to unify divergent syntax
o e.g. main entry point, interpolants, texture samples, etc.

e Shaders written with these changes compile in both!
e (Can always #ifdef platform-specific code too

CPR

Simple shader code syntax examples:

(please excuse the vertex shader) //bloom (pixel shader)
USE_TEXTURE2D(tInput);
shader)
uniform vec4 uPositions[4];
uniform vec4 uTexCoords[4];

uniform vec4 uKernel[BLOOM_SAMPLES];

BEGIN_PARAMS
INPUT@O(vec2,fCoord)
OUTPUT_COLOR@(vec4)

END_PARAMS

{

BEGIN_PARAMS
INPUT@(float,vID)
OUTPUT@(vec2,fCoord)

END_PARAMS

r

{ vecd ¢ = vec4(@.e, 0.0, 0.0, 0.0);

HINT_UNROLL
for(int i=0@; i<BLOOM_SAMPLES; ++i)

{

vec2 tcoord = uTexCoords[int(vID)].xy;
ifdef RENDERTARGET_Y_DOWN
tcoord.y = 1.8 - tcoord.y;

vec3 k = uKernel[i].xyz;
c += texture2D(tInput, fCoord + k.xy) * k.z;

fCoord = tcoord;
OUT_POSITION = uPositions[int(vID)];

OUT_COLOR® = c;

Image-Based Lighting

AN

,(, i\j ?f}:

i R mf
A “Ey

Chinese Man” by Ballo | ball

0.cghub.com

Image-Based Lighting

e |mage-based lighting is key to image quality

o The world is not made of point lights!
e Seen use in film for over a decade, more recently games
e HDR photography captures great real-world lighting data

e Light probes in game levels can do the same

Image-Based Lighting

e Usually done in real time with pre-convolved cube maps
o Diffuse: store Lambert or similar (N dot L), look up with N
o Specular: store Phong or similar (R dot L)"s, look up with R
o Use mipmap chain for storing different Phong exponents

e Toolbag 1 used this approach, as have many others

Image-Based Lighting

e Looks pretty good!
e Has lengthy n*2 precomputation time :(

e Makes some BRDFs difficult or impossible
o Blinn-Phong, Anisotropic

e Some shaders (e.g. skin) required custom convolutions

Image-Based Lighting

e GPU importance sampling

o http://http.developer.nvidia.
com/GPUGems3/gpugems3_ch20.html

e (General idea:

o Sample cube map several times to
approximate integral

o Sample directions distributed based
on ‘importance’, or scale of BRDF

o Can use mipmap LOD to simulate
larger sample groups

http://http.developer.nvidia.com/GPUGems3/gpugems3_ch20.html
http://http.developer.nvidia.com/GPUGems3/gpugems3_ch20.html
http://http.developer.nvidia.com/GPUGems3/gpugems3_ch20.html

Image-Based Lighting

e Toolbag 2 has a few specular functions to pick from:
o Simple Mirror (1 sample, basic reflection)
o Blinn-Phong (32 samples, importance distribution)
o Anisotropic (32 samples, ‘distorted’ importance dist. + aniso filtering)

Can share the same cube map with ordinary mips
No precomputation time

Fast image import!

Can do any BRDF!

Cube seams can be an issue
o Pre-process these edges if hardware doesn't filter properly

Screen-space Ray Tracing

e |BL is great, mostly for spaces with distant backgrounds
e “Indoor” probes can be used, with parallax correction,
but:

O O O O O

Objects that share a probe won'’t reflect each other

Contact reflections are not present

Often results in a “floaty” look, especially with dynamic scenes
Cross-fade between probes looks funny

(

Screen-space Ray Tracing

e Solution: just add ray tracing! Easy, right?
e k-d tree & full tracing etc. are too much right now

e Already have a sort-of-voxelized copy of the scene
o The depth buffer!

e \What if we just marched rays against that?
e Won't be perfect, but maybe still useful if combined with
IBL

Screen-space Ray Tracing

e Turns out this works pretty well!

Good contact reflections

e Speed proportional to screen fill,
not geometry

e Speed is usable for higher end
GPUs

Screen-space Ray Tracmg

Screen-space Ray Tracing

e Performance Optimizations:
o Create a course R32G32 min/max buffer from depth
o Trace with big steps against this at a high level (limit 24 samples)
o On intersection, perform (10) samples of full-res scene depth
o On *that* intersection, perform (6) additional samples to refine position

e Best case (no hit): < 24 samples
e Average case: ~70-90 samples
e \Worst case: 270 samples

Screen-space Ray Tracing

e Artifacts:

O O O O O O

“Shadowing” occurs often where information is missing
Can’t do much but count it as a ray miss

This creates gaps in the reflected image

Can hide some by fading out rays pointing near the camera
Screen boundary is the other obvious limitation

Fade out as ray nears screen edges

Screen-space Ray Tracing

e Compositing:

©)
@)

O O O O

No lit surfaces to reflect (haven’t done forward pass yet!)

We have the previous frame, but thats not very reliable data
m Looks *really* bad for reflections to drop out or lag

Just trace against depth, and store resulting hit coordinates

After main pass, gather reflected light from color buffer and composite
Should *replace* IBL/environment lighting, not add!

This means the main pass must mask its specular with “hit mask”

Screen-space Ray Tracing

e BRDF interaction:

o What if the surface is not perfectly smooth?
o Reflection should blur
o Remember our IBL importance sampling? We can do the same here

o Screen-aligned noise texture, combined with gloss value can generate a
random ray with importance distribution

o With supersampling will approximate integral

o Can also average with neighbors, but too much of this looks bad

o Still trying to strike a good balance with the filtering on this

Supersampling

. ¥
—

i

Supersampling

o MSAA

o Good hardware support

Works well for edges

But not all edges (e.g. discarded pixels)

And not anything else (e.g. texture samples, reflections)
Can complicate compositing with multiple passes / effects

O O O O

Supersampling

e FXAA (or similar)

Works on all pixels

No issues with compositing (all happens in post)
Fast!

Kind of a blurry look

Doesn’t help shader aliasing very well

O O O O O

Supersampling

e Supersampling
o Works on everything
o No issues with compositing
o Very high quality
o Super slow :(
e This is pretty much perfect for offline screenshots

e But not our viewport. Can we speed it up?

Supersampling

e Temporal Supersampling

O O O O O

Take the average over several frames
Use changing sub-pixel projection shifts
Requires rolling frame buffer history
Any number of samples you like

Very fast!

Supersampling

e Temporal Supersampling

Movement generates a motion-blur effect :(

Can partly fix with reprojection into prior frames’ projection/cam matrix
Can partly fix with velocity estimation

Still not great results

Easier for our purposes just to turn off the AA during certain operations,
e.g. camera motion

O O O O

O

Supersampling

e We use 4x temporal supersampling in Toolbag 2's
viewport

e (Can use just about any count during final render
o 25 (5x5 kernel) is usually enough

e Sub-pixel shift can also be used for very large shots
Hardware has VRAM / implementation limits on output size
Composite multiple renders into large CPU-side buffer

Yields huge screenshots with no divided-frustum artifacts

Combines with supersampling too
m e.g. 4x enlargement, 25x sampling = 100 renders

O
O
O
O

Supersampling

e Also allows for cool quality/speed optimizations

e (Can get more “free” samples of:
o Specular
o Traced reflections
o “Screen door” transparency (order independent!)
o Shadows
o Textures

e Add a mipmap LOD bias, or even turn it off
o Supersampling covers texture filtering better than mipmapping does

Wrapping up

e Toolbag is a lot of fun to work on
e Fun playground for lots of graphics techniques :)

e \We have great users who make smart feature requests
o Shader source is open and editable in any installed copy!

e \We plan to keep expanding the tools while we have an
audience

Time for questions!

Thanks

Jeff Russell (@)3ffdr) - engineering

Andres Reinot (@monkeyscience8) - engineering

Mark Doeden (@markdoeden) - biz, ops, wearer of hats
Joe Wilson (@JoeWilsonEQ) - artist in residence, publicity

