
Rendering in Marmoset
Toolbag

A Game Engine For Artists

Penn Engineering CIS 700
April 28, 2014

Marmoset
● Hi, I'm Jeff Russell (@j3ffdr)
● I work at Marmoset (www.marmoset.co)

○ Started early 2012
○ 3 partners + 1-3 contractors
○ All remote
○ The ‘t’ is not silent
○ We do graphics stuff!

http://www.marmoset.co

Marmoset Toolbag
● Toolbag is a standalone real-time renderer for artist use
● “Game Engine for Artists”
● WYSIWYG final renders
● Basic scene, lighting, material editing
● Used for sharing, preview, presentation, material setup
● Output options for high quality screenshots, turntables

○ More to come ;)

Marmoset Toolbag
● Grew from a simpler in-house game dev tool

○ “Darkest of Days” at 8monkey
● Joe Wilson: “You guys should sell this”
● Initially free, now $129 / seat
● We’ve grown mainly by word of mouth

○ www.polycount.com

http://www.polycount.com
http://www.polycount.com

Marmoset Toolbag
● Version 2 (December 2013) is a full rewrite
● Windows 7/8 and OS X 10.9
● 64-bit only, C++
● Rough size:

○ Toolbag: ~60k lines
○ libCPR: ~15k
○ Shaders: ~5k
○ Server: ~3k

Demo!
Art by Yosuke Ishikawa

Render Overview
● Toolbag 2 is a forward renderer (mostly), not deferred
● Need the flexibility of completely different shaders

○ skin, cloth, anisotropy, different spec models
● Dynamic light sources and shadow casting is "sort of

deferred"

Render Order
1. Depth/normal pass
2. Reflection ray casts
3. SSAO
4. Main IBL pass
5. Reflection ray gather & composite
6. Dynamic lights & shadows
7. Wireframes & misc.
8. Post effects, AA & present
Depending on settings, only 4 & 8 will always run

Material System
● Swappable subroutines for various shading inputs
● Subroutines mainly focus on varying workflows

○ e.g. spec mask vs. metalness vs. IOR
● UI maps to shader subroutines more or less directly
● NOT a full shader graph system

○ User-friendly and approachable is a primary design goal
● Several million shader permutations

○ Requires runtime compilation as user edits
○ HLSL builds really slowly, especially loops >:|
○ If I were Microsoft I would work on this, but hey
○ Hash & cache to disk for later reuse, so only first hit is slow

Material System
● Quick list of some current modules:

○ Subdivision: Flat, PN Triangles
○ Displacement: Height, Vector
○ Surface: Normal Map, Detail Normal Map, Traced Parallax
○ Microsurface: Gloss/Roughness
○ Albedo: Albedo Map, Vertex Color
○ Diffusion: Unlit, Lambertian, Microfiber, Skin
○ Reflectivity: Specular Map, Matlaness Map, IOR
○ Reflection: Mirror, Blinn-Phong, Anisotropic
○ Occlusion: Occlusion Map, Vertex AO
○ Emissive: Emissive Map, Heat
○ Transparency: Cutout, Dither, Blend
○ + some extras (e.g. Dota 2, Substance support)

CPR
● Toolbag uses Direct3D 11 (Win) & OpenGL 3/4 (Mac)
● Future APIs?

○ GLES, WebGL, Consoles? Direct3D 12? OpenGL 5??
● Need to avoid rewriting everything for each platform!

○ Including shaders!
● How can we do this?

CPR
● CPR (Cross-Platform Render)
● In-house graphics abstraction library
● Supports backends for:

○ Direct3D 11
○ OpenGL 3
○ OpenGL ES 2
○ No-Op

● Recently dropped (we consider these dead):
○ Direct3D 9 (win + xbox 360)
○ OpenGL 2
○ GCM (ps3)

CPR
● CPR is a full wrapper
● Graphics API fully hidden

○ not even #include
● Exposes similar primitives

○ Buffers, textures, render states,
shaders, draw commands

● Statically linked C++
● Basically a new API of its own

CPR
● Interface must match common subset of backends
● Fortunately this subset is large

○ Mostly what you’d be working with anyway for cross-platform dev
● Opportunity to design our own interface to gfx
● Potential for all kinds of debugging, verification, etc.

CPR
● Which shader language to use?

○ GLSL?
○ HLSL?
○ NVIDIA’s Cg is dead :-/

● Exact language conversion is nontrivial
○ Existing solutions often don’t expose newest features

● Any compiler must work on all platforms
○ Precompilation not possible for us

CPR
● GLSL and HLSL are similar & have good preprocessors
● Insert macros to give both sets of key words

○ e.g. both float4 and vec4, lerp and mix, etc.
● Insert more macros to unify divergent syntax

○ e.g. main entry point, interpolants, texture samples, etc.
● Shaders written with these changes compile in both!
● Can always #ifdef platform-specific code too

CPR
Simple shader code syntax examples:
(please excuse the vertex shader)

Image-Based Lighting

“Chinese Man” by Ballo | ballo.cghub.com

Image-Based Lighting
● Image-based lighting is key to image quality

○ The world is not made of point lights!
● Seen use in film for over a decade, more recently games
● HDR photography captures great real-world lighting data
● Light probes in game levels can do the same

Image-Based Lighting
● Usually done in real time with pre-convolved cube maps

○ Diffuse: store Lambert or similar (N dot L), look up with N
○ Specular: store Phong or similar (R dot L)^s, look up with R
○ Use mipmap chain for storing different Phong exponents

● Toolbag 1 used this approach, as have many others

Image-Based Lighting
● Looks pretty good!
● Has lengthy n^2 precomputation time :(
● Makes some BRDFs difficult or impossible

○ Blinn-Phong, Anisotropic
● Some shaders (e.g. skin) required custom convolutions

Image-Based Lighting
● GPU importance sampling

○ http://http.developer.nvidia.
com/GPUGems3/gpugems3_ch20.html

● General idea:
○ Sample cube map several times to

approximate integral
○ Sample directions distributed based

on ‘importance’, or scale of BRDF
○ Can use mipmap LOD to simulate

larger sample groups

http://http.developer.nvidia.com/GPUGems3/gpugems3_ch20.html
http://http.developer.nvidia.com/GPUGems3/gpugems3_ch20.html
http://http.developer.nvidia.com/GPUGems3/gpugems3_ch20.html

Image-Based Lighting
● Toolbag 2 has a few specular functions to pick from:

○ Simple Mirror (1 sample, basic reflection)
○ Blinn-Phong (32 samples, importance distribution)
○ Anisotropic (32 samples, ‘distorted’ importance dist. + aniso filtering)

● Can share the same cube map with ordinary mips
● No precomputation time
● Fast image import!
● Can do any BRDF!
● Cube seams can be an issue

○ Pre-process these edges if hardware doesn’t filter properly

Screen-space Ray Tracing
● IBL is great, mostly for spaces with distant backgrounds
● “Indoor” probes can be used, with parallax correction,

but:
○ Objects that share a probe won’t reflect each other
○ Contact reflections are not present
○ Often results in a “floaty” look, especially with dynamic scenes
○ Cross-fade between probes looks funny
○ :(

Screen-space Ray Tracing
● Solution: just add ray tracing! Easy, right?
● k-d tree & full tracing etc. are too much right now
● Already have a sort-of-voxelized copy of the scene

○ The depth buffer!
● What if we just marched rays against that?
● Won’t be perfect, but maybe still useful if combined with

IBL

Screen-space Ray Tracing
● Turns out this works pretty well!
● Good contact reflections
● Speed proportional to screen fill,

not geometry
● Speed is usable for higher end

GPUs

“Lego Guy” by Drew
Watts

Screen-space Ray Tracing
Disabled:

Art by Joeri Vromman

Screen-space Ray Tracing
Enabled:

Art by Joeri Vromman

Screen-space Ray Tracing
● Performance Optimizations:

○ Create a course R32G32 min/max buffer from depth
○ Trace with big steps against this at a high level (limit 24 samples)
○ On intersection, perform (10) samples of full-res scene depth
○ On *that* intersection, perform (6) additional samples to refine position

● Best case (no hit): < 24 samples
● Average case: ~70-90 samples
● Worst case: 270 samples

Screen-space Ray Tracing
● Artifacts:

○ “Shadowing” occurs often where information is missing
○ Can’t do much but count it as a ray miss
○ This creates gaps in the reflected image
○ Can hide some by fading out rays pointing near the camera
○ Screen boundary is the other obvious limitation
○ Fade out as ray nears screen edges

Screen-space Ray Tracing
● Compositing:

○ No lit surfaces to reflect (haven’t done forward pass yet!)
○ We have the previous frame, but thats not very reliable data

■ Looks *really* bad for reflections to drop out or lag
○ Just trace against depth, and store resulting hit coordinates
○ After main pass, gather reflected light from color buffer and composite
○ Should *replace* IBL/environment lighting, not add!
○ This means the main pass must mask its specular with “hit mask”

Screen-space Ray Tracing
● BRDF interaction:

○ What if the surface is not perfectly smooth?
○ Reflection should blur
○ Remember our IBL importance sampling? We can do the same here
○ Screen-aligned noise texture, combined with gloss value can generate a

random ray with importance distribution
○ With supersampling will approximate integral
○ Can also average with neighbors, but too much of this looks bad
○ Still trying to strike a good balance with the filtering on this

Supersampling

Supersampling
● MSAA

○ Good hardware support
○ Works well for edges
○ But not all edges (e.g. discarded pixels)
○ And not anything else (e.g. texture samples, reflections)
○ Can complicate compositing with multiple passes / effects

Supersampling
● FXAA (or similar)

○ Works on all pixels
○ No issues with compositing (all happens in post)
○ Fast!
○ Kind of a blurry look
○ Doesn’t help shader aliasing very well

Supersampling
● Supersampling

○ Works on everything
○ No issues with compositing
○ Very high quality
○ Super slow :(

● This is pretty much perfect for offline screenshots
● But not our viewport. Can we speed it up?

Supersampling
● Temporal Supersampling

○ Take the average over several frames
○ Use changing sub-pixel projection shifts
○ Requires rolling frame buffer history
○ Any number of samples you like
○ Very fast!

Supersampling
● Temporal Supersampling

○ Movement generates a motion-blur effect :(
○ Can partly fix with reprojection into prior frames’ projection/cam matrix
○ Can partly fix with velocity estimation
○ Still not great results
○ Easier for our purposes just to turn off the AA during certain operations,

e.g. camera motion

Supersampling
● We use 4x temporal supersampling in Toolbag 2’s

viewport
● Can use just about any count during final render

○ 25 (5x5 kernel) is usually enough
● Sub-pixel shift can also be used for very large shots

○ Hardware has VRAM / implementation limits on output size
○ Composite multiple renders into large CPU-side buffer
○ Yields huge screenshots with no divided-frustum artifacts
○ Combines with supersampling too

■ e.g. 4x enlargement, 25x sampling = 100 renders

Supersampling
● Also allows for cool quality/speed optimizations
● Can get more “free” samples of:

○ Specular
○ Traced reflections
○ “Screen door” transparency (order independent!)
○ Shadows
○ Textures

● Add a mipmap LOD bias, or even turn it off
○ Supersampling covers texture filtering better than mipmapping does

Wrapping up
● Toolbag is a lot of fun to work on
● Fun playground for lots of graphics techniques :)
● We have great users who make smart feature requests

○ Shader source is open and editable in any installed copy!
● We plan to keep expanding the tools while we have an

audience

Time for questions!

Thanks
Jeff Russell (@j3ffdr) - engineering
Andres Reinot (@monkeyscience8) - engineering
Mark Doeden (@markdoeden) - biz, ops, wearer of hats
Joe Wilson (@JoeWilsonEQ) - artist in residence, publicity

